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 

Abstract— Magnetic Resonance Imaging (MRI) is an 

emerging technology in the field of medical imaging, which 

reduced the need to use invasive imaging technologies like 

computed tomography. As the image acquiring process behind 

the MRI technology is complex physics, the focus has been 

given to simplifying and enhancing the efficacy of the MRI 

technology. In this work, the focus has been given to an 

already recognized parallel MRI (pMRI) reconstruction 

method named Eigenvalue Iterative Self-Consistent Parallel 

Imaging Reconstruction or ESPIRiT. ESPIRiT uses coil-by-

coil parallel reconstruction procedure along with Eigenvalue 

decomposition for sensitivity like estimation and then utilizes 

traditional sum-of-square (SOS) to reconstruct the final MR 

image. The SOS recombination technique proved to be 

augmenting noise as well as it based on the assumption that 

parallel coil sensitivities are uniform. In this work a convex 

optimization outline has been proposed which can replace the 

SOS recombination technique as well as can deliver an 

optimal solution for ESPIRiT. The SOS recombination of 

ESPIRiT has been replaced by a convex optimization formula 

and the modified convex ESPIRiT has been compared with the 

original ESPIRiT for demonstrating efficacy. The comparison 

results comprise qualitative, quantitative, and noise-based 

analysis to illustrate the efficiency of the proposed formula. 

 

Keywords—g-factor maps, Auto-calibration, sensitivity maps, 

ESPIRiT, iterative optimization, convex optimization, global 

solution sum-of-square (SOS), artifacts 

I. INTRODUCTION 

AGNETIC Resonance Imaging (MRI) is a technique 

that employs a magnetic field and radio frequency 

signals to create detailed information of the living 

organs and tissues. The development of MRI 

transformed medical imaging technology which quickly 

became a noninvasive medical imaging procedure. 

Since its development, doctors and researchers have 

combined many modern techniques to use MRI scans to 

assist in imaging procedures and help in research [1]. 

Recent research focuses have been concentrated on the 

fact to improve clinical impacts and efficiencies such as 
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faster scanning times, improved throughput with better 

quality of reconstruction.  

The advent of parallel MRI (pMRI) acquisition 

improved the spatiotemporal resolution of MRI in both 

anatomical and functional scans. Parallel MRI employs 

a Radio-Frequency or RF coil array to concurrently 

obtain samples from multiple receivers, and data 

reduction is attained by reducing phase-encoding 

samples along the k-space trajectory [2]. The pMRI 

reconstruction is based on the subsampled k-space data 

(frequency data) and requires information on the spatial 

sensitivity functions of the receiver coil array. Based on 

how the coil sensitivity functions are preserved and 

incorporated into the pMRI reconstruction, the existing 

reconstruction algorithms may be subdivided into 

multiple categories. 

One of the popular technology and well adopted by 

many imaging tech industries for pMRI reconstruction 

is based on the auto-calibration data from a pre 

reference scan and the sum-of-squares (SOS) action [2]. 

Using the subsampled k-space data, the auto-calibration 

process reconstructs a complete set of k-space data for 

each coil followed by an inverse discrete Fourier 

transform or DFT to acquire the corresponding 

sensitivity encoded image. Or it may directly yield the 

sensitivity encoded matrix of the coil in the spatial 

domain. Explicit values of the coil sensitivity functions 

are not needed in the auto-calibration-based methods. 

The SOS recombination technique is further 

implemented to the acquired sensitivity encoded image 

functions to complete the image reconstruction. The 

SOS operation only delivers the magnitudes of the 

complex-valued image. So, it provides a final pMRI 

image with magnitude data only but does not provide 

any phase information. Typical algorithms of this 

category are GRAPPA [3], IIR GRAPPA [4], and other 

similar methods, which perform interpolation of the 

auto-calibrating signal lines (ACS) in the k-space. Some 

recent algorithms perform the auto-calibration by 

regularized optimization, e.g. [5], [6], [7], and [8], or by 

eigenvalue decomposition, e.g. [9]. The obvious benefit 

of the aforesaid coil-by-coil reconstruction method is 

they are more resistant to errors in sensitivity coil data 
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and embody less visible artifacts [10], [11], and [12] but 

tend to omit phase information in the final MR image 

and also noise accumulation is higher due to SOS 

operation. 

The inspiration for this work has been drawn from the 

fact that the coil data SOS recombination technique 

results from more noise in the final MR image. In this 

work, a convex optimization-based method has been 

employed to substitute the SOS operation used in the 

aforementioned group of algorithms. It has been also 

examined through proper means whether replacing SOS 

operation with convex optimization yields a better 

outcome or not. Thorough comparisons and noise 

analysis has been done. For analytical judgments, 

Eigenvalue decomposition Iterative Self-Consistent 

Parallel Imaging Reconstruction from Arbitrary k-Space 

or conjugate gradient or ESPIRiT [9], which is a blend 

of auto-calibration and sensitivity approximation, has 

been nominated. It uses iterative optimization to 

produce the coil images and then employs SOS for 

recombining the coil images into the final desired 

image. In this work, the SOS technique is being 

replaced by a convex optimization-based approach [13] 

to obtain a truly optimal solution and a final MR image 

that is more insusceptible to noise. Appropriate 

comparisons have been done subsequently. 

In this paper, ℝ, ℝ+ and ℂ indicates the sets of real, 

non-negative real, and complex numbers, 

correspondingly. The lower case letter in bold character 

symbolizes vectors and the capital case letter in bold 

character denotes matrices. ≽ and ≼ symbolize the 

elementwise operations of ≥ and ≤ on vectors, 

respectively. ⊙ denotes the Hadamard or elementwise 

product of vectors and | ∙ | means the elementwise 

magnitude of vector data. 

II. THEORY AND METHODOLOGY 

A. A General Framework of ESPIRiT 

An eigenvalue approach to auto-calibrating parallel 

MRI: where SENSE meets GRAPPA or ESPIRiT was 

proposed in 2014 [9], which opts to bridge the gap 

between SENSE and GRAPPA by using the advantages 

of both the methods in a SPIRiT [5] type reconstruction. 

Authors derived a relation between the eigenvectors of 

the auto-calibration matrix used in GRAPPA and the 

sensitivity functions used in SENSE, assuming that both 

SENSE and GRAPPA are subspace-based methods that 

perform the pMRI reconstruction by recovering the 

solutions from a subspace. Instead of computing the coil 

maps through a traditional reference scan, eigenvalue 

vectors from auto-calibration operators in the k-space 

domain are used to derive the sensitivity maps through 

eigenvalue decomposition in image space. Then these 

estimated coil maps are used for pMRI reconstruction 

by SENSE-like algorithm, the process overcomes the 

limitations of auto-calibration-based methods. 

A typical representation of an MRI equation can be 

written as 

𝑢𝑙 = 𝑅𝐹 𝑠𝑙  𝐼𝑚 … … … … … … … … … … . (1) 

Where, 𝑢𝑙 represents the acquired subsampled k-

space pMRI dataset, 𝑙=1, 2, 3,…, L represents the pMRI 

coil array, 𝑅 denotes the subsampling domain matrix, 𝐹 

represents the Fourier domain, 𝑠𝑙 indicates the 

sensitivity maps and 𝐼𝑚 is the original slice image. 

Equation (1) is used by SENSE using pre-estimated coil 

maps. For images for each coil, the sensitivity encoded 

images can be represented as  

𝐼𝑚𝑙 = 𝑠𝑙  𝐼𝑚 … … … … … … … … … … . (2) 

    As the inspiration of ESPIRiT is mainly from 

GRAPPA [3], let’s present the interpolation scheme 

used by GRAPPA 

𝐼𝑚𝑙(𝑟) = (𝑅𝑟𝐵𝑟𝑢)𝑇𝑛𝑙
𝑟 … … … … … … … … … … . (3) 

Where, 𝑟 indicates a particular position, 𝐵𝑟  stands for 

a reconstruction block, ( )𝑇is the transpose of a matrix, 

𝑢 is the vectored representation of stacked 𝑢𝑙, 𝑛𝑙
𝑟 is the 

GRAPPA reconstruction weights, also known as the 

auto-calibration kernels for position 𝑟. 

     Reconstruction weights are usually derived by 

𝑢𝑙
𝐴𝐶 = 𝑅𝑟

𝑇  𝐵𝐴𝑛𝑙
𝑟 … … … … … … … … … … . (4) 

where, 𝑢𝑙
𝐴𝐶  is the fully acquired samples for auto-

calibration, 𝐵𝐴 is the selected matrix block in the k-

space for auto-calibration. 𝑢𝑙
𝐴𝐶  can be expressed as  

𝑢𝑙
𝐴𝐶 = 𝐵𝐴𝑎𝑖  

Where, 𝑎𝑖 selects the i-th coil data from the auto-

calibration matrix. Now, equation estimation of the 

reconstruction weights is expressed as 

𝐵𝐴𝑎𝑖 = 𝑅𝑟
𝑇𝐵𝐴𝑛

𝑙
𝑟 

𝑜𝑟 𝐵𝐴(𝑅𝑟
𝑇𝑛𝑙

𝑟 − 𝑎𝑖) = 0 … … … … … … … … . . (5) 

The authors have proved in [9] through singular value 

decomposition (SVD) on auto-calibration block matrix 

𝐵𝐴 that there exists a Hermitian and positive semi-

definite matrix 𝜉 with eigenvalues smaller or equal to 

one, which satisfies the following condition 

𝜉𝐼𝑚
⋆ = 𝐼𝑚

⋆ … … … … … … … … … … . (6) 

 𝐼𝑚
⋆ being a possible solution. 

     From SENSE based reconstruction framework, 

solution 𝐼𝑚
⋆ in the k-space domain is depicted as 

𝐼𝑚𝑘
⋆ = 𝐹𝑆𝐼𝑚

⋆ … … … … … … … . . (7) 

Where, 𝑆 = [𝑠1, 𝑠2, … . . , 𝑠𝑙]𝑇 is the stacked coil maps, 

𝐼𝑚𝑘
⋆ is the solution in the k-space. Integrating equations 

(6) and (7) yields 

𝜉𝐹𝑆𝐼𝑚
⋆ = 𝐹𝑆𝐼𝑚

⋆ … … … … … … … … … … . (8) 

Sensitivity maps are estimated through eigenvalue 

decomposition of operator 𝜉, performing inverse Fourier 
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𝐹−1𝜉𝐹𝑆𝐼𝑚
⋆ = 𝑆𝐼𝑚

⋆ … … … … … … … … … … . (9) 

Assuming 𝐹−1𝜉𝐹 = 𝑣, eigenvalue decomposition can 

be further simplified through smaller eigenvalue 

decomposition for 𝑣 in the image domain. Thus 

equation (9) simply becomes 

𝑣𝑆𝐼𝑚
⋆ = 𝑆𝐼𝑚

⋆ … … … … … … … … … … . (10)       

 or, at position 𝑟 where the image 𝐼𝑚
⋆ has non-zero 

value  

𝑣𝑟𝑆𝑟 = 𝑆𝑟 … … … … … … … … … … . (11) 

Sensitivities are computed through eigenvalue 

decomposition of 𝑣𝑟  , by selecting the eigenvectors 

correspond to “eigenvalue= 1”. Sometimes, errors in 

acquisition yield the possibility of multiple eigenvectors 

for “eigenvalue= 1”, resulting in computing a set 𝑗=1, 2, 

3,…, 𝑍𝑟 of sensitivity maps 𝑠𝑙
𝑗
 based for multiple 

images 𝐼𝑚
𝑗

, equation (1) this is represented as 

𝑢𝑙 = 𝑅𝐹 ∑ 𝑠𝑙
𝑗
𝐼𝑚

𝑗

𝑗

… … … … … … … … … … . (12) 

Finally following optimization problem is proposed 

in ESPIRiT to obtain the final MR image 

𝑃(𝐼𝑚
𝑗

) = min
𝐼𝑚

𝑗
∑ ‖𝑢𝑙 − 𝑅𝐹 ∑ 𝑠𝑙

𝑗
𝐼𝑚

𝑗

𝑗

‖

2

2

𝑙

+ 𝜆 ∑ 𝑊

𝑗

(𝐼𝑚
𝑗

) … … … … … … … . (13) 

L1 regularization term in a wavelet basis for 𝑊(𝐼𝑚
𝑗

) is 

usually chosen, which makes the problem an L1 

ESPIRiT framework. The pointwise root of sum-of-

squares on 𝐼𝑚
𝑗

 is performed to obtain the final image. 

The proposed method aims to overcome the limitations 

of GRAPPA-based methods, i.e. SPIRiT by 

implementing sensitivity information to estimate MR 

image, also saves the pre-computation of coil maps 

through reference scanning. It paves a way to compute 

sensitivity maps from auto-calibration data, though 

some errors mentioned earlier resulting a set of 

sensitivity maps from a set of multiple images are 

estimated, ultimately pMRI reconstruction is done by 

performing the SOS operation which may result from 

inferior noise performance than other pure sensitivity-

based methods. 

B. Formulation of Convex ESPIRiT 

From the proposed coil-by-coil reconstruction method 

proposed in equation (13), the final MR image is acquired 

by performing SOS recombination of all the reconstructed 

coil images  

𝐼𝑚𝑝 = √∑ |𝐼𝑚
𝑗

|2

𝐿

𝑗=1

… … … … … … (14) 

where L=total number of coils. 

In this sub-section, the proposed method of ESPIRiT 

in equation (13) has been combined with a proposed 

convex optimization in [13] to replace the SOS 

recombination process stated in equation (14). 

Bearing in mind that the final reconstructed image 

𝐼𝑚𝑝 in (14) is magnitude only function, it is likely to 

implement a convex solution space for the magnitude 

image and the sensitivity encoded functions 𝐼𝑚
𝑗

, which 

can further be derived into a convex optimization 

formulation of the image reconstruction. An instinctive 

reflection of the convex solution space is discussed 

herewith. 

Let 𝐼𝑚
0 ∈ ℝ+

𝑁×𝑁 be the magnitude representation of 

the final MR image 𝐼𝑚. As the magnitudes of the 

sensitivity maps are bounded due to bounded 

inductances of the coils, a constant entity cab be 

approximated as 𝐵𝑙 ∈ ℝ+
𝑁×𝑁, such that |𝑍| ≼ 𝐵 for 

each coil 𝑙 = 1, 2, . . . , 𝐿. It follows that 

|𝐼𝑚𝑙| ≼ 𝐵𝑙 ⊙ 𝐼𝑚
0 , 𝑓𝑜𝑟 𝑙 = 1, 2, . . . , 𝐿 … … … (15) 

If 𝐼𝑚
0  and 𝐼𝑚

𝑗
 are measured as the solution entities, the 

inequalities in (15) interpolate into a convex hull 

comprising the solutions of 𝐼𝑚
0  and 𝐼𝑚

𝑗
 , with carefully 

selected constant bound vectors 𝐵𝑙 . This solution space 

delivers a basis for the convex optimization tactic for 

the final pMR image. It is, however, well-known that 

the global solution space only occurs for the magnitude 

image 𝐼𝑚
0  but not for any other real or complex-valued 

image vectors. 

     Selecting the appropriate boundary matrix can be 

complicated, but tapping an element-wise penalty which 

has positive magnitude with initial guesstimate on 

estimated weights 𝑍 can provide a suitable 𝐵. 

𝑚𝑖𝑛𝐵,𝛿‖𝐵 − 𝑍 − 𝛿‖2
2 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝛿 ≽ 0 … … (16)  

Now let’s emphasize the bi-linear inequalities in (15). 

Resembling 𝐵 for each coil in (16) re-forms problem 

(15) into no longer bi-linear. Considering the final MR 

image 𝐼𝑚
0  to be sparse in some transform domains and 

also non-negative, following convex optimization can 

be implemented over the results of ESPIRiT in equation 

(13).  

𝑚𝑖𝑛
𝐼𝑚

0
‖𝑊𝐼𝑚

0 ‖1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐼𝑚
0 ≽ 0, |𝐼𝑚

𝑗
| ≼ 𝐵𝑙 ⊙ 𝐼𝑚

0   (17) 

Where 𝑊 signifies a universal wavelet transformation 

matrix and adopting that the wavelet transformed image 

vector 𝑊𝐼𝑚
0  indicates a sparse domain. 

The unconstraint Lagrangian form of the 𝐿1 the 

regularized optimization problem (17) can be written as 
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𝑚𝑖𝑛
𝐼𝑚

0 ,𝑞𝑙

 
1

2
‖𝐵𝑙 ⊙ 𝐼𝑚

0 − |𝐼𝑚
𝑗

| − 𝑞𝑙‖2

2
+

𝛼

2
 ‖𝑊𝐼𝑚

0 ‖1 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐼𝑚
0 ≽ 0, 𝑞𝑙 ≽ 0 … … … … … … … … (18)                                                  

Where, 𝑞𝑙is a non-negative element-wise penalty to 

shove |𝐼𝑚
𝑗

| always within the borderline of the convex 

solution region. 

III. EXPERIMENTAL SETUP 

Two different sets of the dataset have been 

implemented to test the proposed method with 

traditional ESPIRiT reconstruction.  

A. Data Acquisition 

The initial dataset is a single slice in-vivo brain data 

set of a healthy human volunteer, the raw form of the 

dataset is available in [14]. This data was attained on a 3 

Tesla SIEMENS Trio scanner with an 8-channel head 

array and an MPRAGE (3D Flash with IR prep.) 

sequence. The scanning parameters were TR/TE = 

2530/3.45 ms, TI = 1100 ms, data resolution N×N = 

256×256, flip angle = 7°, slice thickness = 1.33 mm and 

FOV = 256×256 mm
2
. The data procurement was done 

in the Cartesian coordinate system and the fully 

acquired k-space data have been also manually 

subsampled by the pattern of uniform sampling with 

additional auto-calibration signal (USACS) lines along 

the phase encoding direction. The fully acquired k-space 

data are manually and uniformly subsampled at the 

nominal hastening rate, denoted by 𝒇_𝒏𝒐𝒎, together 

with supplementary 36 auto-calibration signals (ACS) 

lines in the central k-space region along the phase 

encoding direction to form the under-sampled k-space 

data pattern. Two sets of under-sampled data at 𝒇_𝒏𝒐𝒎 

= 4 and 8 have been obtained. Considering the added 36 

ACS lines, the corresponding net under sampling rates, 

denoted by 𝒇_𝒏𝒆𝒕, of the data sets are 𝒇_𝒏𝒆𝒕 = 2.56 

and 3.76.  

 

 
Fig. 1. USACS under-sampling pattern with 𝒇 _𝒏 𝒆 𝒕  =2.56 

(𝒇 _𝒏 𝒐 𝒎  = 4) 

 

The second one is of a phantom which was simulated 

100 times and was scanned on a 3 Tesla SIEMENS 

machine with a 32-channel head using true fast imaging 

(TFI) with steady-state precession sequence (TrueFISP). 

The parameters of the scan were TR/TE = 11/6.5 ms, 

data resolution N×N = 256×256, flip angle = 60° and 

FOV = 162 × 162 mm
2
. The assimilated k-space 

datasets are in the Cartesian system and consistently 

subsampled at the nominal rate of 𝒇_𝒏𝒐𝒎 = 4 and 8. 

The subsampled data along with the 32 additional ACS 

lines in the central k-space region along the phase 

encoding direction created a subsampled k-space dataset 

with net undersampling rate 𝒇_𝒏𝒆𝒕 = 2.67 and 4. 

B. Computational Setups 

All the computational methods stated in the above 

discussions have been programmed on MATLAB 

(Math-Works, Natick, MA, USA). The implementation 

of the optimization problem given in equation (18) has 

been applied using the iterative algorithm proposed in 

[15]. The least-squares routine ‘LSQR’ in MATLAB 

[16] has been adopted to solve the non-negative sub-

problem. The 2-D fast Fourier transform routine "fft2" 

was applied for faster and memory unloading of DFT 

operations. For wavelet domain in the L1 wavelet 

regularized reconstruction, Donoho’s Wavelab codes 

[17] have been applied. Haar transform has been 

selected for the wavelet transform vector W for all the 

Cartesian datasets. Values of regularization parameters 

such as α are empirically chosen in the optimization 

algorithm for reconstruction of the in vivo as well as the 

phantom data sets. 

For ESPIRiT, codes provided by respective authors in 

[18] have been used to generate pMRI reconstruction 

results for comparison. 

To evaluate the reconstruction performance, the 

reconstructed images, denoted by 𝐼𝑚
0 , are compared with 

the image reconstructed from fully acquired data 

samples, which is denoted as 𝐼𝑆𝑂𝑆. The normalized mean 

square error (NMSE) is defined as 

𝑒𝑁𝑀𝑆𝐸 =
‖𝐼𝑚

0 −  𝐼𝑆𝑂𝑆‖
2

‖ 𝐼𝑆𝑂𝑆‖2
 

IV. RESULTS AND ANALYSIS 

This segment represents the simulation results data. 

Firstly, the in vivo brain image from fully acquired 

samples is displayed as the reference image for 

comparison. Then the pMRI reconstructed images using 

the proposed convex formulation in (18) and the 

original ESPIRiT coil-array recombination method 

denoted by equation (14) for different nominal 

reduction factors has been publicized for comparison. 
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For each reduction factor, error images for both have 

been estimated and have been displayed along with the 

reconstructed images for the assessment objective. 

 

 
Fig. 2. In vivo brain image from the fully acquired dataset 

 

Fig. 2 has been restored from the fully attained k-

space data using inverse Fourier transform routine in 

MATLAB. Fig. 2 is set to be the reference image for 

comparing reconstruction abilities. 
 

 
Fig. 3. Reconstructed in vivo brain image by ESPIRiT, for 

𝒇_𝒏𝒐𝒎 = 4 

 

     Fig. 3 embodies the restored pMR image for a 

nominal reduction factor of “4” (net reduction 

factor=2.56). The stated formula in Eq. (13) has been 

implemented and then followed by the SOS 

reconstruction given in (14) to achieve Fig. 3. 
 

 
Fig. 4. Reconstructed in vivo brain image by proposed convex 

optimization formula following SPIRiT, for 𝒇_𝒏𝒐𝒎 = 4 

However, Fig. 4 has been reconstructed by 

substituting the SOS reconstruction with the convex 

optimization method proposed in (18). Though it is very 

apparent that both the images in Fig. 3 and Fig. 4 are 

very alike, upon closer examination a minor discrepancy 

in accumulated noise can be detected. In Fig. 3 the noise 

in the central area of the image is more prominent than 

Fig. 4.  

It is obvious that from reconstructed images, the 

delicate difference is hard to find. To overcome that, 

error images have been obtained for both processes. 

Error image is projected by subtracting the 

reconstructed image (from subsampled data), from the 

SOS image (from the fully acquired dataset). 
 

 
Fig. 5. Error image for ESPIRiT by SOS, for 𝒇_𝒏𝒐𝒎 = 4. 

 

 
Fig. 6. Error image when SOS is replaced by convex 

optimization, for 𝒇_𝒏𝒐𝒎 = 4. 

 

After closely reviewing the error images in both Fig. 

5 and Fig. 6 respectively, the superiority of the proposed 

convex method becomes more ostensible. Fig. 5 has 

brighter error pixels (indicating accumulating noise 

during reconstruction), whereas Fig. 6 has some 

marginal error pixels on the right side as well bottom 

left corner with very negligible grey values. 

For quantitative comparison, normalized mean square 

error 𝑒𝑁𝑀𝑆𝐸  has been calculated using the 

aforementioned formula. Although the mean square 

error is not gold-standard in the MRI community for 
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evaluation of simulation-based reconstruction results. 

This method often yields different estimations from 

simulation to simulation in pMRI reconstruction. But 

for the ease of the readers, a means square error-based 

comparison chart has been added. In Table 1, each 

𝑒𝑁𝑀𝑆𝐸   value has been accomplished after averaging 

three simulation runs and the highest error result has 

been also stated. 

TABLE I 

NMSE VALUES OF RECONSTRUCTED IMAGES BY ESPIRIT SOS 

AND BY PROPOSED FORMULA AT DIFFERENT REDUCTION 

FACTORS 

𝒇 _𝒏 𝒐 𝒎  ESPIRiT 

SOS 

(Average) 

ESPIRiT 

SOS 

(Highest) 

Proposed 

Method 

(Average) 

Proposed 

Method 

(Highest) 

4 0.0055 0.0061 0.0044 0.0052 

8 

12 

0.0096 

0.0114 

0.0101 

0.0119 

0.0084 

0.0099 

0.0090 

0.0106 

 

In the case of NMSE comparison, Table 1 also 

depicts that the proposed formula in (10) replacing the 

SOS in (6) can yield better results. But it is noted that 

NMSE results can’t be taken for granted as results will 

vary if the images are reconstructed in a different 

device. 

As conferred earlier SOS recombination often results 

in inferior Signal to Noise or SNR performance in the 

final MR image, a thorough investigation of SNR 

performances is carried out using the in vivo brain 

image and the phantom image. g-maps for both the 

images have been assessed to extricate the SNR 

performances of SOS and the proposed convex 

optimization method.  

 

 
Fig. 7. g-factor maps remodeled for subsampled in vivo brain 

data using ESPIRiT SOS, 𝒇_𝒏𝒐𝒎 = 8 

 

For thorough SNR analysis using in vivo brain 

dataset, random noise with fixed variance has been 

added to the reference brain data. Then the data has 

been subsampled as described in section III-A and then 

reconstructed using ESPIRiT and the proposed convex 

optimization method. Following pMRI reconstructions, 

g-factor maps are estimated for both the methods as 

described in [19]. Fig. 7 shows the g-maps for the 

reconstructed subsampled in vivo brain dataset utilizing 

ESPIRiT for 𝒇_𝒏𝒐𝒎 = 8. The brighter (closer to 1) grey 

values generally portray higher noise in the 

reconstruction process. 

 
Fig. 8. g-factor maps remodeled for subsampled in vivo brain 

data using proposed convex optimization replacing SOS, 

𝒇_𝒏𝒐𝒎 = 8 

 

    Fig. 8 demonstrates the g-maps for reconstructed in 

vivo brain image using proposed convex optimization in 

Eq. (18) for the same subsampling measures 𝒇_𝒏𝒐𝒎 = 

8. This image comprises grey values with lesser 

magnitudes compared to Fig. 7, which interprets less 

noise accumulation related to SOS coil-by-coil 

reconstruction. Though these g-maps are estimated from 

single pMRI reconstruction, which does not guarantee 

the most precise g-maps comparisons. For more precise 

analysis, the phantom dataset has to be implemented. 

The detail of phantom scanning has been described in 

section III-A and the phantom image from the fully 

sampled dataset is displayed in Fig. 9. 

 

 
Fig. 9. Phantom image reconstructed from full data 

 

For g-factor maps evaluation using phantom data, 100 

sets of random noise matrices have been created using 

the “Randn” routine in MATLAB. Then the random 

noise matrices are coagulated with the 100 sets of 

phantom data to generate 100 sets of noise polluted 

phantom images. These phantom images are 

subsampled as stated in section III-A and reconstructed 

using ESPIRiT and the proposed convex optimization 
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method. g-factor maps are obtained for both methods 

and then averaged to harvest the final g-map image. The 

g-map images from phantom data are revealed in RGB 

format for the better consideration of their variances. 

 
Fig. 10. g-maps obtained for phantom datasets using ESPIRiT 

multiple array coils recombinations, 𝒇_𝒏𝒐𝒎 = 4 

 

 
Fig. 11. g-maps obtained for phantom datasets using convex 

hull based proposed optimization method, 𝒇_𝒏𝒐𝒎 = 4 

 

In Fig. 10, a g-map image is obtained from the 100 

sets of phantom images with additionally added noise 

matrices, reconstructed using ESPIRiT. If one opts for 

differences between Fig. 10 and Fig. 11, the g-map 

image in Fig. 10 is noticeably brighter than Fig. 11. As 

brighter pixels indicate a higher degree of accumulated 

noise, it can be safely presumed the SOS reconstruction 

used by ESPIRiT can yield a buildup of more 

reconstruction noise. Another fact should be realized is 

that less noise in the phantom image compared to in 

vivo brain image. This primarily can be interconnected 

to two factors. Firstly, in vivo images are more prone to 

collect noise throughout scanning and calibration than 

phantom images. Secondly, a single set of data has been 

taken to obtain g-factor maps for in vivo data which is 

not the typical norm. Moreover, in vivo comparison has 

been done to give some idea about noise performance 

differences between ESPIRiT and upgraded ESPIRiT by 

convex optimization. 

V.  CONCLUSION 

The proposed convex-hull region approximated 

optimization approach to pMRI coil-by-coil 

recombination aims to improve the inherent 

shortcomings of coil-by-coil reconstruction algorithms 

which implements sum-of-square operation to get the 

final MR image. The proposed method needs to be 

implemented in a two-step procedure. In first, coil 

images are reconstructed using traditional and popular 

coil-by-coil reconstruction techniques i.e. GRAPPA, 

SPIRiT. These conventional algorithms depend 

indirectly on coil sensitivities and based on the 

postulation that coil maps are uniform. The 

exceptionality of ESPIRiT is it’s also somehow linked 

to coil sensitivities through the extraction process of 

Eigenvalues. Though depending less on the presumption 

that coil sensitivities are uniform rather than linking coil 

maps with Eigen value-based optimization for the 

reconstruction process, gives ESPIRiT an upper hand 

over conventional coil-by-coil reconstruction methods 

which implement sensitivity data implicitly. But, the 

limitations of SOS recombination persist. The proposed 

method in this work is based on the presence of a 

convex hull in the coordinate system of the magnitude 

image and each of the sensitivity encoded coil images, 

which can be constructed using a priori information of 

upper bound vectors on the calibration data. Such a 

technique opts out any non-convex complicacy and 

permits a globally optimal solution for the pMRI 

reconstruction. It has been already observed through 

various comparisons in [19] that replacing SOS in 

SPIRiT by convex optimization can yield superior 

reconstruction performances. Though the proposed 

formula puts a toll on computational time but is 

manageable due to reconstruction time in computational 

machines do not have any effect on scanning length. As 

computational processing power is increasing with time, 

lengthy computational would not be an issue in the 

future. 
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